jueves, 30 de mayo de 2013

Productos Notables

Productos notables


Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores.
Se llama productos notables a ciertas expresiones algebraicas que se encuentran frecuentemente y que es preciso saberfactorizarlas a simple vista; es decir, sin necesidad de hacerlo paso por paso.
Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
 A continuación veremos algunas expresiones algebraicas y del lado derecho de la igualdad se muestra la forma de factorizarlas (mostrada como un producto notable).
Cuadrado de la suma de dos cantidades o binomio cuadrado
a2 + 2ab + b2 = (a + b)2

El cuadrado de la suma de dos cantidades es igual al cuadrado de la primera cantidad, más el doble de la primera cantidad multiplicada por la segunda, más el cuadrado de la segunda cantidad.
Demostración:

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a2 + 2ab + b2 debemos identificarla de inmediato y saber que podemos factorizarla como (a + b)2
Nota:
Se recomienda volver al tema factorización para reforzar su comprensión.

Ver: PSU; Matemática

Cuadrado de la diferencia de dos cantidades

a2 – 2ab + b2 = (a – b)2

El cuadrado de la diferencia de dos cantidades es igual al cuadrado de la primera cantidad, menos el doble de la primera cantidad multiplicada por la segunda, más el cuadrado de la segunda cantidad.
Demostración:

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a2 – 2ab + b2 debemos identificarla de inmediato y saber que podemos factorizarla como (a – b)2

Producto de la suma por la diferencia de dos cantidades (o producto de dos binomios conjugados)

(a + b) (a – b) = a2 – b2

El producto de la suma por la diferencia de dos cantidades es igual al cuadrado de la primera cantidad, menos el cuadrado de la segunda
Demostración:

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma (a + b) (a – b) debemos identificarla de inmediato y saber que podemos factorizarla como a2 – b2

Ver: PSU: Matematica,

Otros casos de productos notable (o especiales):


Producto de dos binomios con un término común, de la forma

x2 + (a + b)x + ab = (x + a) (x + b)
Demostración:
Veamos un ejemplo explicativo:
Tenemos la expresión algebraica
x2 + 9 x + 14
obtenida del producto entre (x + 2) (x + 7 )
¿Cómo llegamos a la expresión?
a) El cuadrado del término común es (x)(x) = x2
b) La suma de términos no comunes multiplicada por el término común es (2 + 7)x = 9x
c) El producto de los términos no comunes es (2)(7) = 14

Así, tenemos:
x2 + 9 x + 14 = (x + 2) (x + 7 )
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a + b)x + ab debemos identificarla de inmediato y saber que podemos factorizarla como (x + a) (x + b)

Producto de dos binomios con un término común, de la forma

x2 + (a – b)x – ab = (x + a) (x – b)
Demostración:

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a – b)x – ab debemos identificarla de inmediato y saber que podemos factorizarla como (x + a) (x – b).



Producto de dos binomios con un término común, de la forma

x2 – (a + b)x + ab = (x – a) (x – b)
Demostración:
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 – (a + b)x + ab debemos identificarla de inmediato y saber que podemos factorizarla como (x – a) (x – b).
Producto de dos binomios con un término común, de la forma

mnx2 + ab + (mb + na)x = (mx + a) (nx + b)

En este caso, vemos que el término común (x) tiene distinto coeficiente en cada binomio (mx y nx).

Demostración:
Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma mnx2 + ab + (mb + na)xdebemos identificarla de inmediato y saber que podemos factorizarla como (mx + a) (nx + b).

Cubo de una suma
a3 + 3a2b + 3ab2 + b3 = (a + b)3

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 + 3a2b + 3ab2 + b3debemos identificarla de inmediato y saber que podemos factorizarla como (a + b)3.


Cubo de una diferencia
a3 – 3a2b + 3ab2 – b3 = (a – b)3

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 – 3a2b + 3ab2 – b3debemos identificarla de inmediato y saber que podemos factorizarla como (a – b)3.



A modo de resumen, se entrega el siguiente cuadro con Productos notables y la expresión algebraica que lo representa:

Binomio al cuadrado


Binomio de suma al cuadrado


Un binomio al cuadrado (suma) es igual es igual al cuadrado del primer término, más el doble producto del primero por el segundomás el cuadrado segundo.

(a + b)2 = a2 + 2 · a · b + b2

(x + 3)2 = x 2 + 2 · x ·3 + 3 2 = x 2 + 6 x + 9




Binomio de resta al cuadrado


Un binomio al cuadrado (resta) es igual es igual al cuadrado del primer término, menos el doble producto del primero por el segundo, más el cuadrado segundo.

(a − b)2 = a2 − 2 · a · b + b2

(2x − 3)2 = (2x)2 − 2 · 2x · 3 + 3 2 = 4x2 − 12 x + 9
El desarrollo de un un binomio al cuadrado se llama trinomio cuadrado perfecto.

a2 + 2 a b + b2 = (a + b)2



a2 − 2 a b + b2 = (a − b)2

Binomio al cubo
Cubo de un binomio 10
Ahora veremos el desarrollo para el cubo de un binomio, que es la consecuencia de multiplicar dicho binomio tres veces por sí mismo, es decir:
11
O bien rescribiéndolo como el producto del cuadrado de dicho binomio por el mismo binomio:
12
Si utilizamos la regla para el cuadrado de un binomio tenemos:
13
Efectuando el producto y sumando los términos semejantes obtenemos:
14
Con lo que podemos enunciar la siguiente regla:
“El cubo de un binomio es igual al cubo del primer término, más el triple producto del cuadrado del primer término por el segundo, más el triple producto del primer término por el cuadrado del segundo, más el cubo del segundo término.”

DIFERENCIA DE CUADRADOS


Se le llama diferencia de cuadrados al binomio conformado por dos términos a los que se les puede sacar raíz cuadrada exacta.
Al estudiar los productos notables teníamos que:
En donde el resultado es una diferencia de cuadrados, para este capitulo es el caso contrario:
Donde siempre la diferencia de cuadrados es igual al producto de la suma por la diferencia de sus bases.
Pasos:
  1. Se extrae la raíz cuadrada de ambos términos.
  1. Se multiplica la suma por la diferencia de estas cantidades (el segundo termino del binomio negativo es la raíz del termino del binomio que es negativo).
Ejemplo explicativo:
Ejemplos:
 



                SUMA DE CUBOS


La suma de dos cubos se descompone en dos factores y es igual al producto de la suma de las raìes cùbicas  de los tèrminos, por el polinomio cuyos, tèrminos son el cuadrado de la raìz cùbica del primer tèrmino, menos el producto de las raìces cùbicas, mas el cuadrado de la raìz cùbica del sgundo tèrmino.

x3+ a3 = (x +a) ( x2 - ax + a2)


EJEMPLO:

1.     X3Y3 + 27Z3 = (xy - 3z)(x2y2 + 3xyz + 9z2)


Proceso:

Raìz cùbica el primer tèrmino, tercera parte del exponente de las variables
........ X3Y= xy
Raìz cùbica del segundo termino, tercera parte del exponente de las variables...  27Z3 = 3z
Se eleva al cuadrado la primera raìz .............................................................................(xy)2 = x2y2

Se multiplican entre si las raices cùbicas ....................................................................(xy)(3z)= 3xyz
Se eleva al cuadrado la segunda raìz............................................................... (3z)9z2




Producto notable

Expresión algebraica
Nombre
(a + b)2
=
a2 + 2ab + b
Binomio al cuadrado
(a + b)3
=
a3 + 3a2b + 3ab2 + b3
Binomio al cubo
a2 - b2
=
(a + b) (a - b)
Diferencia de cuadrados
a3 - b3
=
(a - b) (a2 + b2 + ab)
Diferencia de cubos
a3 + b3
=
(a + b) (a2 + b2 - ab)
Suma de cubos
a4 - b4
=
(a + b) (a - b) (a2 + b2)
Diferencia cuarta
(a + b + c)2
=
a2 + b2 + c2 + 2ab + 2ac + 2bc
Trinomio al cuadrado 

No hay comentarios:

Publicar un comentario